ENERGY DISSIPATION IN AN UNDERGROUND
EXPLOSION

E. A. Koshelev UDC 622.235.5

The dissipation of the energy of an explosion in soil has been discussed by Sagomonyan [1, 2] and by
the author [3]. The dissipation processes occurring in the expansion of a cavity in an underground explo-
sion arediscussedin|[1l]. The temperature distribution in the earth directly behind the spreading shock
wave is found in [2] for the two-dimensional case using the "plastic gas™ model. Experiments to determine
the temperature distribution in an underground explosion are described in [3]. The experimental data are
in good agreement with theoretical predictions made by solving the nonstationary heat diffusion problem
using a mathematical formulation corresponding closely to the experiment. In the present article we ana-
lyze the initial temperature distribution after motion ceases. Ratios are found of the fraction of the total
energy of the explosives expended in heating the ground in an irreversible compression by the shock front,
the fraction dissipated in plastic flow behind the front, and the fraction remaining in the detonation prod-
ucts after the edge of the cavity stops moving.

The most complete model of soft earth was proposed by Grigoryan, * but this model is very involved
for analytic calculations. Since experiment shows that the major portion of the energy of an explosion is
dissipated in a layer of earth lying close to the edge of the cavity, we use a simpler model of the motion.

We solve the problem within the framework of the model proposed by A. S. Kompaneets [4], espe~
cially since the equation of state for soil used in [4] corresponds rather closely to the experimental curve
characteristic of loams if it is assumed that "packing" begins at pressures ~5-10 kg/cm?.

For spherical symmetry we have, according to {4], the following formulation of the problem:

du pu) 8 2(c,—cy) O .
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with the plasticity condition
S, — g = k4 m (5, + 264) (2)

and the following conditions at the edge of the cavity and at the shock front:

6. {a) = — P (a)
6, (R) = —ptitt— P, (3)

Here R is the radius of the shock front, a is the radius of the

TABLE 1 . .
cavity, oy, 0p=0p are the components of the stress tensor, r is the
gl om | oo | mow|E w| B % radial coordinate, u is the mass velocity of the particles, P(g) is the
pressure in the cavity, and Py is the pressure at the start of the ir-
04 {958l 46.7 éé'a 18' Z reversible compression.
0.05|0.233| 7.7 | 31.5|58.1 | 10. . . . .
05 |6,15|21,6 659|125 The relation between the radius of the cavity and the radius of
g'z 3-24 ég% gg-g 1§'§ the shock front is found from the law of conservation of mass:
0.1 |0.238| 7,97 | 41.2 | 48.7 | 101 .
0.5 |6.67|30.4]|57.8]11.8 a=[E+ (1 — &) (a/RPI" R = eR (4)
0.7 le.21]|26.6]61.1]12.3 :

* 8, S. Grigoryan, Studies inthe Mechanics of Soils [in Russian], Doc-
toral Dissertation, Moscow State University (1965).
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where £=1~p,/p is the packing.
By using (2)-(4) we obtain from Eq. (1) the equation for the coordinate of the front R:

RE+A@®E=B®R)IP @+ C®)I (5)
Here
A—B@—1)  25@—1)@—e9
AR =2— et 1 - @—41—eh
o —1) & k 6m

B (R) = aa—l) ’ c (R) = —5; (a—a - 1) - Pts_a’ @ =

pe (1 — 1 2m

Dots over letters denote time derivatives.

In Eq. (5) the function P(a) is defined by the relations [5]

P@=- Py (ajagy® if wLe<a,
@= Py (a,fa))® aa)®,  if 2, <la
ady = 1.53 g, V1 = 37 Y2 = 1.27

We reduce Eq. (5) to dimensionless form:

d:
z —éz— + 24y = 2B (B %3 1+ C)
@ == R/Ro, y= R2po/Po

Here

1, if a<<axa,
{ (@0 7, if e, <a
Ry=ay is the initial radius of the cavity, and p; is the initial density of the soil.

This equation was integrated on a computer for Py=7.97 X 10 kg/cm?, P, =6 kg/cm?, and k=1.41
kg/cm?. Figure 1 shows y as a function of x for various values of £ and m. The number 1 in Fig. 1 de-
notes curves corresponding to m=0.7, £=0.05 (solid curve) and m=0.7, £=0.1 (open curve); the number 2
denotes curves for m= 0.1, £ =0.05 (solid curve) and m=0.1, £=0.1 (open curve). The curves are not ex-

tended beyond x=5 since for the scale chosen they can hardly be distinguished and merge into a single
curve. Table 1 shows the values of the final radius of the cavity for various values of ¢ and m.

The expression for the energy of the shock compression per unit mass has the form

exz‘%('p%—%—)(P—{—P*): £Po <y+ 3%-) (6)

2p9
The change in the energy of plastic deformation per unit mass is

dez 2u
— = g — G
di or © 2

By using the plasticity condition we write this expression in the form

ot o) 2 m

3mj r
tU

Here t; is the time the shock wave reaches the point rj, and i is the time the whole motion ceases.

From the solution of the equations of motion we have for o,

i [ (] e () 4[R2 2

From the law of conservation of mass it is easy to obtain a relation betweeﬁ R and r, and U and R:

Lk o P8 emepiy [ B (RN
G T 3m cz——i(RT B r

r=[ER L (1—B)rflh, U=E@®RMER (9)
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By substituting (8) and (9) into (7) and changing to R as an integration variable by the relation dR=R-
dt we have after transformations

ey § (2] 02 V(2 -
_sen—acmre ((nypepen w6 )P nyea 10

o o

Equation (10} is easily put into dimensionless form by multiplying it by pogPo'i. All the integrals in
(10) were evaluated by computer. Figure 2 shows the dimensionless quantities e; and e, as functions of x
for £=0.05 and m=0.233. The numbers 1 and 2 denote, respectively, e; and e, as functions of x. The
curves indicate that a large part of the energy of the explosion is dissipated within a distance ~5 Ry. After
all motion ceases this layer of earth has a thickness ~ (0.05-0.15) @y, where ay is the final radius of the
cavity.

The total fractions of the energy of the explosgion going into shock compression and plastic flow are
given by '

By Ry
B = S 4ne190r2dr, Ey= S 4Lnespridr
R, Ry

A fraction E4 of the total energy of the explosion is contained in the detonation products. The quan-
titative relations between the various fractions of the energy of the explosion for various characteristics
of soils are shown in Table 1.

It is clear from the data presented that a large part of the energy of the explosion is accounted for
by plastic flow behind the shock front, and not taking account of this part of the energy of the explosion can
lead to a large error in determining the initial temperature distribution in the explosion. The conclusion
is that the initial temperature distribution in the earth after the explosion has a delta function form with
the maximum temperature at the edge of the cavity and a very rapid decrease with distance.
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